Posted on Leave a comment

ICRS 2023: Report from Toronto

Toronto skyline

I counted over 175 talks and posters at the 33rd annual gathering of the International Cannabinoid Research Society (ICRS), which convened in Toronto at the end of June. In accordance with longstanding ICRS policy, all speakers presented new findings and data that had not yet been published in a peer-reviewed journal. But this year’s 4-day ICRS conference was notable not only for its cutting-edge science. It was also the first ICRS meeting since the passing of its cofounder and guiding light Raphael Mechoulam.

Several colleagues paid homage to Mechoulam in a moving memorial session that honored his many contributions to the burgeoning field of cannabinoid science, which has grown to encompass numerous academic and clinical disciplines. The wide range of topics addressed at the conference is both a reflection of the endocannabinoid system’s ubiquitous role in health and disease and a testament to the enduring mysteries of plant medicine.

CBD & THC

Cannabidiol (CBD) figured prominently in several noteworthy oral presentations and posters that explored the therapeutic potential of plant cannabinoids from various angles. A few highlights:

CBD for breast cancer recovery. Researchers from McGill University in Montreal reported a case study of a 52-yr-old breast cancer survivor who experienced significant improvement in neuropathy symptoms and quality of life following self-administration of 300 mg/day of CBD isolate for six weeks.

CBD for post-concussion syndrome. John Patrick Neary and a team of scientists in Western Canada examined CBD’s impact on 3 female patients who suffered from post-concussion syndrome. They found that cannabidiol helped restore blood pressure dynamics and improve cardiac function in patients who consumed doses as low as 50 mg/day or as high as 400 mg/day.

CBD for psychosis.Dutch scientists from Utrecht University reported that impaired functioning of the brain’s default mode network “likely contributes to psychosis vulnerability.” They found that a CBD treatment regimen of 600 mg daily for four weeks attenuated dysfunctional default mode connectivity in a study of 31 recent-onset psychosis patients.

THC better than CBD for obesity. Israeli scientists assessed the impact of chronically administered CBD and THC on obesity and related metabolic disorders. Given the appetite-arousing qualities of cannabis (“the munchies”), it seems paradoxical that the “prevalence of obesity and metabolic diseases are lower in cannabis users compared to non-users,” the Israelis noted. Experiments on mice yielded biphasic results: 10 mg/kg of purified THC stimulated weight gain and impaired glucose-tolerance in mice, but 30 mg/kg of THC had the opposite effect, leading to a reduction in weight gain and improved glucose-tolerance. While CBD treatment enhanced glucose-tolerance regardless of weight gain, THC showed greater promise as an anti-obesity compound, according to this study. The researchers concluded that “chronic oral consumption of sufficient concentrations of THC, but not CBD, ameliorates diet-induced obesity and . . . metabolic disorders.”

Sufficient concentrations of THC, but not CBD, reduces diet-induced obesity and metabolic disorders.

CBD-rich cultivars for anxiety. University of Colorado researcher L. Cinnamon Bidwell examined the effects of three cannabis chemovars with different THC:CBD ratios. Not surprisingly, the CBD-dominant chemovar with little THC was associated with significant reductions in anxiety and tension among cannabis users as compared to the THC-dominant and the mixed THC:CBD chemovars.

Cannabis and cortisol. Washington State University researchers probed the chronic and acute effects of cannabis use on human cortisol rhythms. “Stress relief is the most cited reason for habitual cannabis use,” they noted in their assessment of how cannabis consumption impacts levels of cortisol, a stress-related hormone. “We found a significant decrease in cortisol concentrations following acute cannabis use,” they concluded. “These findings corroborate cannabis users’ self-reported experience of decreased stress following cannabis use.”

CBG and CBC. Preliminary results from a “double-blind, placebo-controlled, crossover, field trial” underscored the anxiolytic, stress-relieving, and memory-enhancing potential of cannabigerol (CBG), which produced greater reductions in anxiety than placebo. Cannabicromene (CBC), another minor phytocannabinoid, was reported to exert effects through various pathways, including the CB2 cannabinoid receptor, ion channels TRPA1 and TRPA4, and the nuclear receptor PPAR-gamma.

Pain, Opioids & Addiction

Pain, opioids, and addiction comprised a major area of focus at ICRS 2023. Much of this research involved animal models and other preclinical experiments that shed light on the subtleties and inner workings of the endocannabinoid system. Medical scientists, for example, at Mount Sinai’s Department of Psychiatry and Neuroscience probed the neurobiological underpinnings of CBD’s ability to attenuate opioid relapse. Building on their previous work, which showed that CBD lessens cue-induced heroin-seeking in an animal model of relapse, the Mount Sinai lab identified “discrete biological pathways impacted by heroin” in the nucleus accumbens (NAc), the brain region that regulates motivation and reward: “Bioinformatic analysis revealed that CBD reversed a number of metabolic and cell signaling pathway alterations induced by heroin particularly in the NAc shell.”

Neuroscientists at Indiana University explored how allosteric modulation of the CB1 cannabinoid receptor affected opioid self-administration and relapse. Allosteric modulators can either enhance or weaken how a receptor signals. A negative allosteric modulator (NAM) — a synthetic research compound identified as GAT358 — reduced the reinforcing properties of morphine by altering the shape of the CB1 receptor and weakening its signal. This approach might “represent a viable therapeutic route to decrease opioid addictive behaviors and relapse,” the scientists surmised. The same lab reported that GAT358 suppressed “opioid-mediated unwanted side effects including tolerance and withdrawal” but did not block opioid analgesia.

The wide range of topics at ICRS is both a reflection of the endocannabinoid system’s ubiquitous role in health and disease and a testament to the enduring mysteries of plant medicine.

CBD, it should be noted, also acts as a negative allosteric modulator at the CB1 receptor, meaning that CBD doesn’t cause the CB1 receptor to signal (like THC does) but CBD influences how it signals. If the CB1 receptor is like a dimmer switch, then CBD turns it down a notch. It’s also possible for a positive allosteric modulator (PAM) to turn the dimmer switch up a notch and amplify CB1 signaling.

The Indiana University group led by Andrea G. Hohmann studied PAMs as well as NAMs, fine-tuning CB1 receptor signaling in both directions. They found that strengthening CB1 signaling via positive allosteric modulation “could suppress neuropathic pain without producing unwanted CNS side effects or tolerance.” Tweaking the CB1 receptor in such a manner avoided potential problems (intoxication, impairment) associated with direct activation of CB1 by THC or various synthetic cannabinoids. Mohammed Mustafa of Virginia Commonwealth University reported that positive allosteric modulation of the CB1 receptor also reduced somatic withdrawal signs of nicotine-dependent mice.

On the Shoulders of Giants

2023 saw the passing of two research pioneers who were giants in the field of cannabinoid science. Mary E. Abood, PhD, conducted groundbreaking studies on the structure and function of cannabinoid receptors. She also identified other receptor subtypes that bind to cannabinoids. A leading figure in the ICRS since its founding in the early 1990s, Abood was known for mentoring young women scientists. After her death on Feb. 19, 2023, the ICRS announced the creation of the “Mary E. Abood ICRS Women in Cannabinoid Research Fund” to support women trainees and investigators.

Mechoulam, 92, passed away three weeks after Abood died. For all his stunning achievements as a chemist, perhaps his greatest contribution was how he nurtured a robust noncompetitive spirit, an ethos of cooperation and collegiality that persists among scientists involved in cannabinoid research. This was evident at the dinner and awards ceremony at the end of conference — an ICRS tradition — as young scientists were acknowledged for their research accomplishments and recently elected ICRS officers were introduced. When ICRS president-elect Ziva Cooper, the director of UCLA’s Center for Cannabis and Cannabinoids, greeted the group, it felt like a generational hand-off had occurred, a passing-of-the-baton from the old guard to younger scientists who stand on the shoulders of giants.

Martin A. Lee is the director of Project CBD. He’s authored and edited several books, including Smoke Signals, Acid Dreams, and The Essential Guide to CBD. © Copyright, Project CBD. May not be reprinted without permission.

The post ICRS 2023: Report from Toronto appeared first on Project CBD.

Original Article

Posted on Leave a comment

Expert Gives Delta-8 THC Thumbs Down

Bad Chemistry

Dr. Mark A. Scialdone, a recognized expert in the field of organic chemistry who specializes in natural product chemistry, is an inventor of 37 issued US patents and the author of 17 peer-reviewed articles in science publications. From 1994 to 2013, he was employed as a principal investigator at DuPont Central Research and Development. Dr. Scialdone is a founding member of the Cannabis Chemistry Subdivision of the American Chemical Society from which he received the 2018 CANN-CHAS Heidolph Award for Excellence in Cannabis Chemistry. Scialdone is currently founder and president of BetterChem Consulting, which provides consulting services worldwide in the chemical, food, plant essential oil, and cannabis industries. He has guided clients on license applications, facility design and build out, equipment installation and optimization, and plant oil extraction for cannabis and hemp processing facilities.

Project CBD: Your presentation with Allyn Howlett at the International Cannabinoid Research Society conference in Toronto (June 2023) discussed the chemical conversion of CBD into Δ8-THC (delta-8 THC) and “numerous additional THC isomers . . . with unknown pharmacological and safety profiles.” Explain what an isomer is and why the lack of information regarding novel THC isomers is problematic.

Dr. Mark A. Scialdone: Isomers are similar molecules having different discrete arrangements of the same atoms creating molecules with different chemical and physical properties. The Δ8-THC being produced from the acid-catalyzed conversion of CBD is an unpurified reaction mixture that contains multiple, non-natural THC isomers, including Δ8-iso-THC and Δ4(8)-iso-THC. These are not present in cannabis and are only formed in the chemical conversion, whose impact on human health is unknown. What’s more, these non-natural THC isomers are difficult to measure — and they are also difficult, if not impossible, to remove from the reaction mixture to purify the Δ8-THC that’s produced. You need access to sophisticated analytical methods to discern product purity from the isomeric byproducts formed, which is why production from hemp-derived cannabinoid products needs to be done under the appropriate FDA regulations for API [active pharmaceutical ingredient] synthesis and manufacturing.

Project CBD: Are there other byproducts from CBD conversion to Δ8-THC that we should be concerned about in addition to these THC isomers?

Scialdone: In addition to the iso-isomers of THC, there are also abnormal isomers called regioisomers that are formed in the conversion reaction. Recently, degradation products such as olivetol as well as chlorinated compounds, have been found in commercial Δ8-THC products tested. The conversion of hemp-derived CBD into Δ8-THC and other synthetic compounds such as HHC (hexahydrocannabinol) occurs without proper regulatory oversight to ensure process standardization, product specification, and accurate third-party testing, all of which are mandated in state-licensed cannabis programs.

Project CBD: What comes to mind when you see an ad for “Δ8-THC pre-rolls” given that the plant doesn’t actually produce the Δ8-THC in the joint?

Scialdone: Did they spray or dip the flower or whole joint with synthetic Δ8-THC? How much Δ8-THC was added to the pre-roll? Did the manufacturers use a solvent to treat the flower? If a solvent is used, does it dissolve the phytocannabinoids and terpenes? What’s the actual Δ8-THC purity of what’s being applied to the flower? How much cheaper is it to produce Δ8-THC-pre-rolls than real cannabis pre-rolls? How much money are Δ8-THC producers making?

These non-natural THC isomers are difficult to measure, and they are also difficult, if not impossible, to remove from the reaction mixture to purify the Δ8-THC that’s produced.

Project CBD: Δ8-THC has proven to be a gateway drug of sorts for a new generation of unregulated, synthetic designer compounds — Δ10-THC, Δ12-THC, THCP, THCO, THCX, etc. that are widely available. At issue are potent, intoxicating cannabinoids other than cannabis-derived Δ9-THC. Are these compounds actually derived from hemp? Does their greater cannabinoid receptor binding affinity translate into increased risk?

Scialdone: Only Δ8, Δ9, and Δ10 THC can be synthesized from hemp-derived CBD. All the others are made by chemical conversion. Producing and selling psychoactive products outside the regulatory auspices of the FDA or a state-regulated cannabis program is not ethical. These hemp hustlers are in it for the money, making active pharmaceutical ingredients using process chemistry and producing formulated end-products like vape pens, gummies, and sodas in garages, airplane hangars, basements, and warehouses. These products are sold over the internet, at gas stations, and in smoke shops to anyone with a credit card. Of course, the market for Δ8-THC and other recreational synthetics is only made possible by the ridiculousness of cannabis prohibition. End cannabis prohibition, the market for these products will go away and these compounds will be relegated to research labs, where they belong, not the marketplace.

Project CBD: What do you anticipate regarding the next iteration of the Farm Bill in terms of the legality of Δ8-THC and other synthetic intoxicants?

Scialdone: Unfortunately, I believe that this is a red herring since the USDA’s regulatory authority over hemp ends at harvest. The FDA is supposed to regulate hemp-derived CBD products. The FDA recognizes the need for a different regulatory pathway to properly regulate cannabis/hemp. But the FDA has failed to adopt a regulatory strategy to address this issue. The next version of the Farm Bill should clearly and concisely differentiate high Δ9-THC cannabis from industrial hemp. In no uncertain terms, the Farm Bill must be amended to close the specious THCA-hemp flower loophole that’s enabling the unregulated sale of concentrated, intoxicating, and synthesized cannabinoids. If farmers and manufacturers want to sell psychoactive cannabinoids, they should get a state-issued license to grow and process cannabis.

© Copyright, Project CBD. May not be reprinted without permission.

Rec reading:

The post Expert Gives Delta-8 THC Thumbs Down appeared first on Project CBD.

Original Article

Posted on Leave a comment

Which Terpenes Enhance the Cannabis High?

Ten years ago, most cannabis consumers couldn’t tell a terpene from a cannabinoid. But today things are different. Cannabis flower is categorized according to terpene profile. Product manufacturers add terp blends back into edibles and concentrates. Limonene is practically a household name.

And for good reason. Sure, terpenes impart desirable flavors and aromas. They appear to be good for the body, as well.1 Now it turns out that some terpenes also may contribute to the cannabis high.

A 2021 study2 by University of Arizona scientists concluded that certain terpenes are “cannabimimetic” (in a mouse model of cannabis intoxication) and can selectively enhance cannabinoid activity.

And this month comes a brand-new paper in the journal Biochemical Pharmacology3 by Israeli researchers who report that three cannabis terpenes — at concentrations similar to those found in actual cannabis plants — significantly boost THC signaling at the CB1 receptor.

CB1 Activation

Using an in vitro cellular model, the Israeli team compared CB1 receptor activation by 16 different cannabis terpenes to that of THC alone and to THC-terpene blends with a botanically relevant ratio of 10:1.

When tested individually, all 16 terpenes activated CB1, at about 10% to 50% of activation of THC alone. This is notable in and of itself, though not a huge surprise. While their chemical structures differ quite a bit, terpenes and cannabinoids share key features; both belong to a larger group of plant compounds called terpenoids. In fact, cannabinoids are technically classified as “terpeno-phenolic” substances.

Varying Responses

Next, the researchers tested terpenes and THC together. What they found runs the gamut. In the cases of beta-pinene and geraniol, the mixtures actually produced a smaller effect than the sum of the individual parts, as if these terpenes negated some of THC’s activity.

For eight of the THC-terpene blends, including some of the most common cannabis terpenes — alpha-pinene, beta-caryophyllene, bisabolol, eucalyptol, humulene, myrcene, nerolidol, and terpinolene — CB1 activation equaled that of THC alone. The presence of the terpene seemed to make no difference.

A 2021 study reports that some terpenes are “cannabimimetic” and can enhance cannabinoid activity.

But with three other terpene-THC blends — linalool, ocimene, and terpineol — the researchers observed an additive effect, meaning that CB1 activity equaled the sum observed with THC and the terpene separately. In other words, if the terpene was a 3 and THC was a 7, the blend was a 10.

Finally, three of the terpenes — limonene, borneol, and sabinene — produced a synergistic effect in combination with THC. In these cases, the whole was greater than the sum of its parts: an 11 or 12 rather than the expected 10.

THC-Terpene Synergies

The researchers consider this latter point their most significant finding. It represents the first demonstration of THC-terpene synergism in an in vitro controlled setting, and lends the paper its title: “Selected cannabis terpenes synergize with THC to produce increased CB1 receptor activation.”

Is this evidence of the fabled cannabis entourage effect? Strictly speaking, no, according to the paper’s authors. They note that the term “entourage effect,” as originally coined in a 1998 article in the European Journal of Pharmacology,4 refers to cases where compounds that don’t directly bind to CB1 or CB2 nonetheless boost the activity of the endocannabinoid system.

Since terpenes do activate CB1, this doesn’t fit with the original concept of the entourage effect. “Given that cannabis terpenes demonstrate direct agonism at CB1 receptor,” the authors contend, “THC-terpene effects are beyond the classical definition of entourage.”

Therapeutic Applications?

Semantics aside, the paper’s fundamental findings around THC-terpene interactions, at ratios similar to those in the cannabis plant and at very low terpene concentrations, could have significant implications for both future research and real-world cannabis use.

The simple fact that different terpenes can modify THC activity in different ways seems worthy of attention on its own, but the authors put particular emphasis on their discovery of a synergistic effect for limonene, borneol, and sabinene. While limonene is among the most common cannabis terpenes, borneol is less so, and sabinene is rarer still. As a result, they suggest that these terpenes could be intentionally added to cannabis extracts to maximize effectiveness of their THC content.

Terpenes could be added to cannabis extracts to maximize the effectiveness of their THC content.

“The use of selected terpenes may enable reducing the THC dose in some treatments, and as a result, potentially minimizing the THC-related adverse effects,” they conclude. “This would also help in adjusting the treatment to more sensitive populations such as children and elderly.”

The authors continue, “Enrichment with selected terpenes may allow for composition adjustment to personal needs and to changes during chronic use, such as for daytime versus for sleep.”

Of course, these statements are speculative and not necessarily supported by clinical research. They also smack a bit of marketing-speak, which is not surprising given that four of the authors are employees of the Bazelet Group, a medical cannabis manufacturer in Israel that boasts of using a “breakthrough technology” to “formulate specific desired [cannabinoid-terpene formulations] to supply enhanced therapeutic effect in various medical conditions.”

As always in cannabis science and medicine, the real world is far more complex than the lab, and preclinical findings don’t always translate into lived experience. But at the very least, the study provides further evidence of interactions between terpenes, cannabinoids, and the endocannabinoid system — something Project CBD will explore further in a subsequent article on beta-caryophyllene, the “super terpene.”

Nate Seltenrich, Project CBD contributing writer, is the author of the column Bridging the Gap. An independent science journalist based in the San Francisco Bay Area, he covers a wide range of subjects, including environmental health, neuroscience, and pharmacology. © Copyright, Project CBD. May not be reprinted without permission.

Footnotes

  1. Cox-Georgian, Destinney et al. “Therapeutic and Medicinal Uses of Terpenes.” Medicinal Plants: From Farm to Pharmacy 333–359. 12 Nov. 2019, doi:10.1007/978-3-030-31269-5_15
  2. LaVigne, Justin E et al. “Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity.” Scientific reports vol. 11,1 8232. 15 Apr. 2021, doi:10.1038/s41598-021-87740-8
  3. Raz, Noa et al. “Selected cannabis terpenes synergize with THC to produce increased CB1 receptor activation.” Biochemical pharmacology vol. 212 (2023): 115548. doi:10.1016/j.bcp.2023.115548
  4. Ben-Shabat, S et al. “An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity.” European journal of pharmacology vol. 353,1 (1998): 23-31. doi:10.1016/s0014-2999(98)00392-6

The post Which Terpenes Enhance the Cannabis High? appeared first on Project CBD.

Original Article

Posted on Leave a comment

Finding Rare Cannabinoids in Non-Cannabis Plants

Special glands protruding from cannabis flowers express a series of unique molecules. Cannabinoids, as they are known, exist in cannabis. But it turns out that identical molecules are present in non-cannabis plants, as well. Researchers from Israel’s Weizmann Institute recently reported that they found cannabigerolic acid (CBGA) and other rare cannabinoids in Helichrysum umbraculigerum, a perennial shrub informally known as the woolly umbrella.1

A South African Botanical

Ferdinand Bohlmann and Evelyn Hoffman first discussed the chemical irregularity of Helichrysum. In a 1979 paper published in Phytochemistry2, they analyzed the South African species H. umbraculigerum, native to the eastern part of the country, where it was used in traditional medicine and fumigation rituals.

Bohlmann and Hoffman asserted that the plant’s tops — both leaves and flowers — produce cannabis-specific compounds. But a follow-up study conducted by Italian researchers in 2017 failed to find CBG or its acidic precursor in H. umbraculigerum flowers. They did, however, identify an analog of CBG known as Heli-CBG (also present in some fiber hemp varietals), which binds to the CB2 cannabinoid receptor.3,4

In a May 2023 article in Nature Plants, Weissman Institute scientists confirmed that woolly umbrella produces CBGA in trichomes on its leaves, but hardly any CBGA was present on its flowers. That’s different from cannabis, where CBGA and other cannabinoids are concentrated in trichomes on flower tops.1

Trichomes found on cannabis inflorescence (flowers) have a special cellular build, according to a 2022 study by University of British Columbia researchers in Current Biology. The gland’s bulbous head holds large porous cells that let acidic cannabinoids (CBGA, CBDA, THCA, etc.) move through the trichome.5 The Weizmann Institute team reported that H. umbraculigerum produces a similar cannabinoid transport network on its leaves.1

Sourcing Rare Cannabinoids in Non-Cannabis Shrubs

How did the Israeli scientists figure this out? They fed woolly umbrella precursor compounds responsible for making cannabinoids in cannabis. When given two precursors (hexanoic acid and phenylalanine), the shrub produced more cannabinoids compared to plants fed regular nutrients. This means that the same biosynthetic pathway exists in both cannabis flowers and woolly umbrella leaves.

The woolly umbrella shrub naturally produces on its leaves over 4% cannabigerolic acid alongside other rare cannabinoids. The shrub also contains water-soluble cannabinoids, which are not found in cannabis.

The woolly umbrella shrub produces CBGA in trichomes on its leaves, but not on its flowers.

Essentially, two different plant species have developed the same machinery to produce CBGA. Yet, woolly umbrella is evolutionarily distinct from cannabis. And unlike the shrub, cannabis makes two unique enzymes that flip CBGA into either THCA and/or CBDA.

Exploring a New Phytocannabinoid Toolkit

Thus, there are two toolboxes for cannabinoid phyto-synthesis in the phylogenetic tree. Terpenes and a few flavonoids accompany lipophilic cannabis flowers, whereas a complex array of flavones and water-soluble cannabinoids develop in H. umbraculigerum. By understanding their similarities and differences, we can better assess the therapeutic potential of each plant.

Cannabinoid compounds found in woolly umbrella dissolve more easily in water and can target specific areas of the body, such as the deeper bowel. But greater bioavailability, an argument for water-soluble cannabinoids, is not necessarily equivalent to greater potency. That which is absorbed quickly and easily also leaves the body and loses efficacy faster. And cannabinoid receptors have more affinity for fat-loving compounds compared to water-soluble agonists.6,7

Travis Cesarone is a freelance writer and communicator focusing on medical cannabis sciences. © Copyright, Project CBD. May not be reprinted without permission.

References

  1. Berman, P., de Haro, L.A., Jozwiak, A. et al. Parallel evolution of cannabinoid biosynthesis. Nat. Plants (2023).
  2. Cannabigerol-ähnliche verbindungen aus Helichrysum umbraculigerum. Phytochemistry. 1979;18(8):1371-1374.
  3. Pollastro, F., De Petrocellis, L., Schiano-Moriello, A., Chianese, G., Heyman, H., Appendino, G., & Taglialatela-Scafati, O. (2017). Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia, 123, 13–17.
  4. Pollastro F, Taglialatela-Scafati O, Allarà M, Muñoz E, Di Marzo V, De Petrocellis L, Appendino G. Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod. 2011 Sep 23;74(9):2019-22. doi: 10.1021/np200500p. Epub 2011 Sep 8. PMID: 21902175.
  5. Livingston, S. J., Rensing, K. H., Page, J. E., & Samuels, A. L. (2022). A polarized supercell produces specialized metabolites in cannabis trichomes. Current biology : CB, 32(18), 4040–4047.e4. https://doi.org/10.1016/j.cub.2022.07.014
  6. Li, X., Chang, H., Bouma, J. et al. Structural basis of selective cannabinoid CB2 receptor activation. Nat Commun 14, 1447 (2023).
  7. Stadel, R., Ahn, K. H., & Kendall, D. A. (2011). The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. Journal of neurochemistry, 117(1), 1–18. https://doi.org/10.1111/j.1471-4159.2011.07186.x

Original Article

Posted on Leave a comment

Cannabichromene, a Minor Cannabinoid with Major Upside

In 2013, Noriko Shinjyo, Ph.D., a Research Associate at Chiba University in Japan, coauthored a study with Italian scientist Vincenzo Di Marzo on cannabichromene (CBC), a phytocannabinoid that exerts profound effects on the nervous system.1

Published in Neurochemistry International, their paper probed how CBC influences the fate of adult neural stem progenitor cells, which are described as “an essential component of brain function in health as well as in pathology.” As stem cells mature, they change and differentiate into new neurons and other cells. CBC was shown to have a positive effect on neural stem progenitor cells during their maturation phase, according to in vitro research.

Recently a different group of scientists has followed up on this decade-old discovery by delineating seven mechanisms through which CBC is able to protect and regenerate the nervous system. They reported their findings in Life, a Swiss scientific journal, noting that CBC, a “neurogenesis enhancer,” enables stem cells “to sustain their viability and differentiation.”2

What Are Neural Stem Cells?

Scientists have identified specific areas of the brain — the hippocampus and the lateral ventricles — where neural stem cells are created. These cells undergo a maturation process, known as differentiation, which is an important stage for young cells located in the spinal cord, brainstem, and brain regions programmed for muscle control. Young stem cells evolve into new neurons, but they can also form cells that comprise the protective sheath surrounding nerves.

Some neural stem cells differentiate into astroglial cells, also known as astrocytes. These abundant star-shaped cells populate the grey and white matter of the brain, where they regulate cerebral blood flow and the transmission of electrical impulses. They also play a crucial role in maintaining the blood-brain barrier and repairing the brain and spinal cord following an infection or a traumatic injury.

CBC is a “neurogenesis enhancer” that enables stem cells “to sustain their viability and differentiation.”

But a subpopulation of these mature cells remains dormant. That’s fortunate, given that active astrocytes can stunt the brain’s natural ability to regenerate after an injury. This means that a regulated maturation of neural stem cells, located in the brain and spinal cord, helps to protect and regenerate the nervous system. And this process is augmented by CBC, a cannabis compound, which regulates the production of new neurons, while also reducing the formation of active mature cells that may impede regeneration after a brain injury.

Can CBC Regenerate Embryonic Cells?

In 2023, a team of six Italian scientists published new details that explain how CBC protects and regenerates damaged neurons and nervous system components. They used a special type of spinal cord cell derived from an embryonic mouse, combined with neuroblastoma cells, to make their discovery. The team assessed changes in the genetic landscape of the cells after exposing them to CBC and a control media.

By further refining their analysis, the team elucidated newly discovered mechanisms behind cannabichromene. The plant cannabinoid helps to facilitate proper dopamine neuron and glutamate receptor maturation. And while various cannabinoids regulate the formation of the nerve’s protective sheath, their neuronal regeneration depends on other functions of CBC.

A Balancing Act with Choline

It seems that one newly found mechanism of CBC might work synergistically with tetrahydrocannabinol (THC), while also counteracting the effects of alpha-pinene, a terpene found in various cannabis chemovars and other botanicals.3

Alpha-pinene appears to act directly against CBC at a specific neurotransmitter that sends signals from muscle to neuron. That transmitter is in the choline family, which is protected by pinene but is broken down more rapidly under CBC exposure. Choline is important for cognition, brain development, neural stem cell maturation, muscle movement, and other basic functions.

THC downregulates the choline transmitter, while CBC boosts a gene that codes for a special choline-destroying enzyme; thus, both CBC and THC are implicated in the reduction of choline, and this can protect the nervous system and regenerate neurons. Alpha-pinene, on the other hand, keeps cognition taut by protecting choline. It’s a balancing act. The use of CBC, the scientists conclude, “could represent an important addition to the regeneration of the nervous system, but further experiments need to clarify and optimize how CBC could be effectively used for this purpose.”

Travis Cesarone is a freelance writer and communicator focusing on medical cannabis sciences. © Copyright, Project CBD. May not be reprinted without permission.

Footnotes

  1. Shinjyo, N., & Di Marzo, V. (2013). The effect of cannabichromene on adult neural stem/progenitor cells. Neurochemistry international, 63(5), 432–437. https://doi.org/10.1016/j.neuint.2013.08.002
  2. Valeri A, Chiricosta L, D’Angiolini S, Pollastro F, Salamone S, Mazzon E. Cannabichromene Induces Neuronal Differentiation in NSC-34 Cells: Insights from Transcriptomic Analysis. Life (Basel). 2023 Mar 9;13(3):742. doi: 10.3390/life13030742. PMID: 36983897; PMCID: PMC10051538.
  3. Russo, E. B., & Marcu, J. (2017). Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Advances in pharmacology (San Diego, Calif.), 80, 67–134. https://doi.org/10.1016/bs.apha.2017.03.004

The post Cannabichromene, a Minor Cannabinoid with Major Upside appeared first on Project CBD.

Original Article

Posted on Leave a comment

CBD Enhances Glucose Metabolism via Nuclear Receptors

Cannabinoid receptors CB1 and CB2 are the definitive and best-known targets of endogenous and plant-derived cannabinoids, but they’re far from the only ones.

Several phytocannabinoids, including cannabidiol (CBD), for example, and the two primary endocannabinoids — anandamide and 2-AG — have been shown to interact with peroxisome proliferator-activated receptors, or PPARs1 (pronounced pee-parrs), which are found on the surface of the cell’s nucleus. This may help to explain how CBD, which has little affinity for either CB1 or CB2, can do so much.

Get to Know the PPARs

PPARs are a group of nuclear receptors that play important roles in regulating metabolism, inflammation, and gene expression. Triggered by hormones, endocannabinoids, and other fatty acid derivatives, and various nutritional compounds,2 PPARs are expressed in different parts of the body:

  • PPAR-a(PPAR-alpha) is found in the liver, kidney, heart, and skeletal muscle, as well as adipose (fat) tissue and the intestinal tract;
  • PPAR-b(PPAR-delta) is expressed in adipose tissue, skeletal muscle, heart, and liver; and
  • PPAR-y (PPAR-gamma), which comes in two forms, is expressed in almost all tissues of the body including the colon, the cardiovascular system, and immune cells.

The first evidence of an endocannabinoid interacting with PPARs came in 2002, when a research team in Tennessee showed that a metabolite of 2-AG activated PPAR-a.3 Since then many more breakthroughs have been made, and peroxisome proliferator-activated receptors are now viewed as an extension of the classic endocannabinoid system (ECS).

PPARs are now viewed as an extension of the classic endocannabinoid system.

Two recent papers reiterate the point that to really understand cannabinoids (especially CBD) and the ECS, it’s essential to get to know the PPARs.

CBD, Psychosis & Glucose Metabolism

A March 2023 study in the journal Frontiers in Psychiatry4 suggests that CBD may act through a PPAR receptor to enhance cerebral glucose metabolism, alterations of which are associated with a host of metabolic and cognitive disorders.5

The paper describes the case of a 19-year-old man in Germany who presented at the Cologne Early Recognition and Intervention Center with “a marked cognitive decline within [six] months, anhedonia, ambivalence, social withdrawal, poverty of speech, and brief, limited intermittent psychotic symptoms, particularly delusions and hallucinations.”

Prior to this, the man had no psychiatric history, the authors note. He had never taken anti-psychotic drugs nor received psychological treatment. And besides an uncle with bipolar disorder, he had no family history of other psychiatric or neurological diseases.

The man’s doctors — two of the paper’s four authors — knew that over the last decade-plus, CBD has begun to be recognized through animal and human studies as a novel therapeutic compound for psychosis that acts via indirect effects on the ECS.6,7 They wanted to try it.

“Due to its excellent tolerability and promising efficacy … and its innovative new mechanisms of action, we decided to offer a respective treatment with cannabidiol to [the] patient,” they write.

The prescription was 600 mg of pure CBD orally per day for 30 days. And it worked. The authors report a substantial clinical improvement in attention, visual processing, visuomotor speed, working memory, and other parameters beginning by day seven, with no adverse events or side effects. That’s quite notable in and of itself — but it’s their investigation of potential mechanisms of action that really contributes to the conversation.

Mechanisms of Action

Using brain scans and blood draws, the researchers observed that this reduction in clinical symptoms was accompanied by enhancement of cerebral glucose utilization — a critical metabolic process whose impairment is implicated in Alzheimer’s Disease, schizophrenia, diabetes, obesity, and more.8

They suggest that the underlying mechanism linking CBD intake, cerebral glucose utilization, and improved psychiatric symptoms may be none other than PPAR-y, one of the three known PPAR receptors. PPAR-y plays an essential role in regulating glucose homeostasis and neuroinflammation, and is directly activated by both CBD and the endocannabinoid anandamide (AEA). (AEA’s molecular fatty-acid cousins, PEA and OEA, activate PPAR-a.)

The activation of PPAR-γ by CBD may be one of the mechanisms relevant to the promising antipsychotic effects of cannabidiol.

The proposed link between CBD, cerebral glucose metabolism, psychiatric symptoms, and PPAR-y makes sense, even if it has yet to be proven definitively. Previous research has linked CBD’s efficacy in treating psychosis to its ability to boost AEA,9 which binds with PPAR-y. PPARs in general are recognized as a potential target for treating psychiatric disorders.10 And a 2022 study showed that CBD treatment improved both glucose metabolism and memory in a rat model of Alzheimer’s Disease.11

“The direct or indirect activation of PPAR-γ by cannabidiol may represent one of the various possible mechanisms relevant to the promising antipsychotic effects of cannabidiol,” the authors conclude. Yes, more research is needed — but what matters most to the patient is that it helps.

Cannabidiol Goes Nuclear

A review article in the journal Phytomedicine12 also published in March 2023 provides a broader look at the clinical implications of CBD’s affinity for PPAR-y. Appearing under the catchy title “Cannabidiol goes nuclear: The role of PPARy,” the paper summarizes existing research into the many ways in which interactions between the two influence human health.

Based on an examination of 78 previous articles, the Iran-based authors determined that CBD’s effects on a long list of conditions (Alzheimer’s disease and memory loss, Parkinson’s disease and movement disorders, multiple sclerosis, anxiety and depression, cardiovascular disease, immune conditions, cancer, and obesity) are mediated at least in part by PPAR-y.

The ubiquitous receptor manages this not only through glucose homeostasis, the authors write, but also by changing the expression of various genes implicated in insulin release, lipid metabolism, inflammation, and immunity. And they note that many effects of CBD can be prevented by synthetic PPAR-y antagonists, which are utilized as research tools.

Ultimately, the review underscores that PPAR-y is a key target for CBD — and argues quite convincingly that “[the receptor’s] activation by CBD should be considered in all future studies.”

Nate Seltenrich, Project CBD contributing writer, is the author of the column Bridging the Gap. He is an independent science journalist based in the San Francisco Bay Area, covering a wide range of subjects, including environmental health, neuroscience, and pharmacology. © Copyright, Project CBD. May not be reprinted without permission.

Footnotes

  1. O’Sullivan, Saoirse Elizabeth. “An update on PPAR activation by cannabinoids.” British journal of pharmacology vol. 173,12 (2016): 1899-910. doi:10.1111/bph.13497
  2. Scandiffio, Rosaria et al. “Beta-Caryophyllene Modifies Intracellular Lipid Composition in a Cell Model of Hepatic Steatosis by Acting through CB2 and PPAR Receptors.” International journal of molecular sciences vol. 24,7 6060. 23 Mar. 2023, doi:10.3390/ijms24076060
  3. Karkhanis, Anil et al. “15-Lipoxygenase Metabolism of 2-Arachidonylglycerol: Generation of a Peroxisome Proliferator-Activated Receptor α Agonist.” Journal of medicinal chemistry vol. 57,11 (2014): 4830-4840.
  4. Koethe, Dagmar et al. “Cannabidiol enhances cerebral glucose utilization and ameliorates psychopathology and cognition: A case report in a clinically high-risk mental state.” Frontiers in psychiatry vol. 14 1088459. 3 Mar. 2023, doi:10.3389/fpsyt.2023.1088459
  5. Rebelos, Eleni et al. “Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review.” Journal of clinical medicine vol. 10,7 1532. 6 Apr. 2021, doi:10.3390/jcm10071532
  6. Rohleder, Cathrin et al. “Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence.” Frontiers in pharmacology vol. 7 422. 8 Nov. 2016, doi:10.3389/fphar.2016.00422
  7. Davies, Cathy, and Sagnik Bhattacharyya. “Cannabidiol as a potential treatment for psychosis.” Therapeutic advances in psychopharmacology vol. 9 2045125319881916. 8 Nov. 2019, doi:10.1177/2045125319881916
  8. Rebelos, Eleni et al. “Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review.” Journal of clinical medicine vol. 10,7 1532. 6 Apr. 2021, doi:10.3390/jcm10071532
  9. Davies, Cathy, and Sagnik Bhattacharyya. “Cannabidiol as a potential treatment for psychosis.” Therapeutic advances in psychopharmacology vol. 9 2045125319881916. 8 Nov. 2019, doi:10.1177/2045125319881916
  10. Matrisciano, Francesco, and Graziano Pinna. “The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders.” Advances in experimental medicine and biology vol. 1411 (2023): 513-535. doi:10.1007/978-981-19-7376-5_22
  11. de Paula Faria, Daniele et al. “Cannabidiol Treatment Improves Glucose Metabolism and Memory in Streptozotocin-Induced Alzheimer’s Disease Rat Model: A Proof-of-Concept Study.” International journal of molecular sciences vol. 23,3 1076. 19 Jan. 2022, doi:10.3390/ijms23031076
  12. Khosropoor, Sara et al. “Cannabidiol goes nuclear: The role of PPARγ.” Phytomedicine: international journal of phytotherapy and phytopharmacology vol. 114 (2023): 154771. doi:10.1016/j.phymed.2023.154771

The post CBD Enhances Glucose Metabolism via Nuclear Receptors appeared first on Project CBD.

Original Article

Posted on Leave a comment

Mechoulam on the Future of Cannabinoid Research

I was fortunate to cross paths with Raphael Mechoulam, “the father of cannabis research,” at several science conferences over the years. The most memorable occasion was the 22nd annual meeting of the International Cannabinoid Research Society (ICRS) in Freiburg, Germany, in July 2012. Mechoulam delivered a plenary speech at the symposium, addressing the future of cannabinoid research and key areas of study that should be pursued.

It was exactly fifty years earlier, in 1962, when Mechoulam launched his scientific investigation into the chemistry of cannabis. In 1963, he and Yuval Shvo first reported the molecular structure of cannabidiol (CBD). And the following year Mechoulam coauthored a paper that elucidated the molecular structure of tetrahydrocannabinol (THC). Although he didn’t know it at the time, Mechoulam had lit a slow burning fuse that would detonate a revolution in medical science.

As a young scientist, Mechoulam set out to understand how cannabis works; he ended up unlocking a treasure trove of information about how we work. Known affectionately as “Raphi” to many of the scientists he mentored, Mechoulam tirelessly promoted cooperation between researchers around the world to advance the study of the body’s “endocannabinoid system,” which produces chemicals similar to THC, CBD, and other plant cannabinoids, and mediates their effects.

In 1992, Mechoulam’s research group at Hebrew University in Jerusalem discovered an endogenous THC-like compound that activates receptors in the mammalian brain. He named it “anandamide,” the bliss molecule. And in 1995, Mechoulam and his team identified a second endocannabinoid compound, 2-arachidonoyglycerol or 2-AG for short. Anandamide and 2-AG are part of an internal lipid neurotransmitter system that regulates a wide range of physiological processes, including appetite, mood, pain perception, and immune function.

“Planning Research for the Next Half Century”

“It’s time to plan ahead for the next half a century,” Mechoulam, age 81, told the Freiburg ICRS attendees, who had gathered to honor his 50 years as a pioneer cannabis scientist. Mechoulam cited three specific areas that should be research priorities: CBD, the CB2 cannabinoid receptor, and a cluster of endogenous fatty acid compounds in the brain that he referred to as FAAA’s.

Mechoulam set out to understand how cannabis works. He ended up unlocking a treasure trove of information about how we work.

Keep in mind that this was in 2012, when CBD was virtually unknown to the general public. But it was already a hot topic among ICRS scientists who were probing the compound’s anti-inflammatory, antioxidant, anticonvulsant, anti-tumoral, neuroprotective, and analgesic properties. The preclinical science was truly jaw-dropping, and Mechoulam envisioned a wide array of therapeutic applications for CBD and its derivatives. But clinical studies of plant cannabinoids were lagging because of strict drug laws in the United States and elsewhere.

THC directly activates both cannabinoid receptor subtypes — CB1 and CB2. However, when THC binds to CB2, it does not trigger the psychoactive high that cannabis is known for because CB2 receptors are not concentrated in the brain. THC binding to CB1, the abundant central nervous system receptor, causes the intoxicating effect. Consequently, researchers set their sights on healing without the high by experimenting with drugs that stimulate the CB2 receptor — while bypassing CB1 in the brain.

CB2 receptors are present throughout the immune system, the peripheral nervous system, metabolic tissue, skin cells, and in many internal organs. Aberrant CB2 signaling is implicated in a raft of autoimmune, neurodegenerative, metabolic, and psychiatric disorders. This makes modulating CB2 an attractive target for drug development and therapeutic intervention.

A Cluster of FAAA’s

Mechoulam was particularly excited about the third area of research — the FAAA’s — which comprise a cluster of fatty acid compounds in the brain. Little is known about “the chemistry of the human personality” or the innate biochemical variations that that may account for individual differences in temperament, he explained, adding: “Accumulation of such knowledge is essential for a future biochemical basis of psychology.”

If specific chemical differences “are the cause, or one of the causes, of the differences in personalities,” then it’s essential “to look for a large ‘catalog’ of compounds, which cause central nervous system effects,” Mechoulam asserted. “The variability of such a cluster of compounds – their levels, their ratios and presumably their effects, not only as individual compounds, but also as a group” (a type of entourage effect) could result in “an infinite number of individual differences.”

Little is known about the chemistry of the human personality or the innate biochemical variations that that may account for individual differences in temperament.

Mechoulam drew attention to the importance of several dozen endocannabinoid-like lipids and other FAAA’s, which include various fatty acid amides of amino acids (and their derivatives, such as ethanol amides) or fatty acid esters with glycerol and related compounds. A partial list of these compounds had been identified and analyzed by Heather Bradshaw’s group at the University of Indiana. Some of these compounds were “evaluated for their biological effects,” Mechoulam noted. “Amongst them are anandamide, 2-AG, NADA, palmitoyl ethanolamide (PEA), oleoyl ethanolamide (OEA), stearoyl ethanolamide, and a few others,” whose individual effects vary considerably, but “the joint effects of groups of these components . . . have not been evaluated.”

Mechoulam and his colleagues looked closely at “oleoyl serine,” which is anti-osteoporotic, but is also found in the brain. “Arachidonoyl serine,” another endogenous lipid compound of interest, “lowers damage caused by closed head injury.” And he observed that “oleoyl glycine” and PEA concentrations are enhanced after damage in a specific brain region. These studies gave rise to the concept of the “endocannabinoidome” — an expanded endocannabinoid system that encompasses a plethora of fatty acid neurotransmitters in addition to anandamide and 2-AG.

“It is tempting to assume,” Mechoulam concluded, “that the huge possible variability of the levels and ratios of substances in such a cluster of compounds may allow an infinite number of individual differences, the raw substance which of course is sculpted by experience. If this intellectual speculation is shown to have some factual basis it may lead to major advances in molecular psychology.”

Martin A. Lee is the director of Project CBD. He’s authored and edited several books, including Smoke Signals, Acid Dreams, and The Essential Guide to CBD. © Copyright, Project CBD. May not be reprinted without permission.

The post Mechoulam on the Future of Cannabinoid Research appeared first on Project CBD.

Original Article

Posted on Leave a comment

Cancer & the CB2 Receptor

The cannabinoid receptor CB1, primary target of THC in the brain, is known for mediating the cannabis high. And its counterpart CB2, mainly expressed in immune cells throughout the body, is understood to play an important role in inflammatory processes. These abstractions are accurate as far as they go, but as with anything related to the endocannabinoid system, reality is far more complex.

Project CBD’s recent article on the passing of Raphael Mechoulam noted that the esteemed scientist believed CB2 should be a focus of future cannabinoid science. The CB2 receptor interacts with THC, CBD, endocannabinoids, and other compounds in a multitude of organs including skin and bone.

Recent research — including papers co-authored by Mechoulam well into his 80s — has confirmed that aberrant CB2 signaling is implicated in a raft of autoimmune, neurodegenerative, metabolic, and psychiatric disorders. CB2 is also an increasingly hot topic in cancer research.

In this two-part series, Project CBD will explore some of the latest studies and what they reveal about what we know — and still don’t know — about this ubiquitous, somewhat mysterious cell receptor.

This week: cancer. Next week: cognitive and mood disorders, including some of Mechoulam’s final work before his death in March at the age of 92.

Prostate Cancer & a New CB2 Ligand

Three studies from the first few months of 2023 probe the function of CB2 in three different cancer models. While their findings are complex and not necessarily conclusive, they contribute to a growing body of knowledge about the potential efficacy of cannabinoids in cancer treatment.

A paper published in February in International Journal of Molecular Sciences1 offers two insights for the price of one: first, another look at how the CB2 receptor functions in a cellular model of cancer; and second, new evidence that a compound called 3-3′-Diindolylmethane (DIM) — present in cruciferous vegetables such as cauliflower, cabbage, broccoli, Brussels sprouts, and a number of leafy greens — exerts anti-cancer effects through the CB2 receptor.

By testing DIM on two different human prostate cancer cell lines, the Italy- and UK-based researchers observed that the compound activated naturally expressed CB2 receptors in both lines — and that in one, known as “PC3,” CB2 activation led to cell death, an effect that was reversed when the researchers blocked the CB2 receptor with an antagonist.

DIM was already known to have an anti-cancer effect more broadly. What had not been previously observed, the authors note, is CB2’s role in mediating this effect in a human cancer cell line. “We can conclude that DIM is a CB2 receptor ligand with a potential anti-prostate cancer effect,” they write.

If true, cruciferous vegetables join saffron, black pepper, cloves, oregano, and some other spices as foods containing compounds that interact with the CB2 receptor in beneficial ways.

But don’t head to the market for a cartload of cauliflower and cabbage just yet. The concentrations of DIM used in the study are too high to be obtained through diet alone, the authors note, and administration by supplements may be required.

Colon Cancer: Case Closed?

A second February 2023 study in the International Journal of Molecular Sciences2 comes to a similar conclusion regarding CB2’s role in colon cancer. Researchers in Israel investigated how the CB2 receptor functioned in a mouse model of colon cancer (utilizing “knockout” mice missing the receptor altogether), and they analyzed genomic data in a large human population to determine the relationship between CB2 variants and colon cancer incidence.

In both cases, the authors write, their findings indicate that “endogenous CB2 activation can modulate the immune response and consequently reduce tumorigenesis” and that “CB2 protects against the development of colon cancer.”

Yet despite their seemingly unambiguous findings, the authors also acknowledge that previous studies have come to very different conclusions about the role of CB2 in cancer.

“CB2 has been investigated in multiple cancer types and models of inflammation,” they write, “and there are controversial results regarding the effect on tumor progression.” For example, past studies have found that CB2 expression is associated with a poor prognosis in humans; that CB2 antagonists, or blockers, suppress tumor growth; that CB2 activation promotes tumor growth in models of colon cancer; and that CB2 agonists inhibit tumor growth. The researchers attribute this ambiguity to variations in animal cancer models and cancer cell lines.

Lung Cancer: A Different Answer

Sure enough, a different study published a month earlier in Frontiers in Immunology3 using a different mouse model of non-small cell lung cancer seems to show something else altogether.

Within knockout mice deficient of CB2 in the “tumor microenvironment” — the normal cells, molecules, and blood vessels that surround a tumor cell, including immune cells expressing high levels of CB2 — a team of Austria-based researchers observed a reduction in tumor burden relative to “wild-type” mice. They also found that CB2-deficient mice responded significantly better to a form of immunotherapy known as anti-PD1.

Together, these findings indicate that CB2 receptors in the tumor microenvironment of non-small cell lung cancer “may act as an immunosuppressor … thereby promoting tumor growth.”

You read that right: the opposite of what the other two papers found. Be that as it may, it still seems clear enough that CB2 modulates cellular immune response in ways directly relevant to cancer progression — and that the clinical implications of this link still need to be worked out.

Read part 2 of this 2-part series: Mental Health & the CB2 Receptor

Nate Seltenrich, an independent science journalist based in the San Francisco Bay Area, covers a wide range of subjects including environmental health, neuroscience, and pharmacology. Copyright, Project CBD. May not be reprinted without permission.

Footnotes

  1. Tucci, Paolo et al. “The Plant Derived 3-3′-Diindolylmethane (DIM) Behaves as CB2 Receptor Agonist in Prostate Cancer Cellular Models.” International journal of molecular sciences vol. 24,4 3620. 11 Feb. 2023, doi:10.3390/ijms24043620
  2. Iden, Jennifer Ana et al. “The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Colon Cancer: A Study in Mice and Humans.” International journal of molecular sciences vol. 24,4 4060. 17 Feb. 2023, doi:10.3390/ijms24044060
  3. Sarsembayeva, Arailym et al. “Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8+ T and NK cells.” Frontiers in immunology vol. 13 997115. 9 Jan. 2023, doi:10.3389/fimmu.2022.997115

The post Cancer & the CB2 Receptor appeared first on Project CBD.

Original Article

Posted on Leave a comment

Mental Health & the CB2 Receptor

In the first part of this series, we reviewed recent research into the role of the CB2 cannabinoid receptor in cancer proliferation. This week we turn our attention to another fascinating aspect of CB2 function: its impact on psychiatric and mood disorders despite not being concentrated in the central nervous system (CNS).

After all, the CNS is the domain of its sibling, the CB1 cannabinoid receptor — the primary target of THC and the mediator of cannabis’ intoxicating effects. CB2, by contrast, is more prominently expressed in the peripheral nervous system, where it regulates inflammation, pain, and neuroprotection. CB2 is found to a much lesser extent in the brain, where it modulates dopamine signaling, neuroinflammation, and neurogenesis.

The CB2 receptor was of particular interest to visionary cannabinoid scientist Raphael Mechoulam. In the year prior to his recent passing at age 92, Mechoulam was still actively involved in research investigating CB2 in a variety of disease models. Here we look at a couple of his final papers on CB2 and mental health, as well as two related reviews published in the same timeframe.

CB2 & Schizophrenia

First comes a paper on CB2’s role in schizophrenia, a condition related to psychosis whose symptoms include hallucinations, delusions, disorganized thinking, social withdrawal, decreased emotional expression, and apathy. Coauthored by Brazilian scientists affiliated with the University of São Paulo, it appeared in the journal Progress in Neuro-Psychopharmacology & Biological Psychiatry1 in July 2022.

“The CB2 receptor modulates dopaminergic neurotransmission, which is abnormally enhanced in schizophrenia patients,” the authors explain. That much is clear. Given this, they wanted to know, how might “HU-910,” a synthetic research compound that selectively activates the CB2 receptor, affect behavior in a rodent model of the disease?

Through a series of tests, they found that HU-910 administration did indeed produce an anti-psychotic-like effect through the CB2 receptor. The authors suggest that these results “support further research on the potential therapeutic properties of this compound to treat schizophrenia.”

But their conclusion that HU-910 could serve as a drug warrants some caution. Cannabinoid receptors don’t function simply as on/off switches. As Project CBD has addressed in the past relative to proposed therapies for bone disease, Alzheimer’s Disease, and autoimmune dysfunction, selective CB2 agonists thus far have been disappointing in the clinical context due to unintended consequences and other unwelcome outcomes resulting from the receptor’s wide reach in the body.

CB2 & Depression

The very last paper bearing Mechoulam’s name before his death — among a body of work encompassing 379 total articles listed at Pubmed — concerns the role of the CB2 receptor in mediating the antidepressive effect of cannabidiolic acid-methyl ester (CBDA-ME). Titled “Cannabinoid Receptor 2 Blockade Prevents Anti-Depressive-like Effect of Cannabidiol Acid Methyl Ester in Female WKY Rats,” it appeared in the February 2023 special issue of the International Journal of Molecular Sciences,2 which explored the biological mechanisms of cannabinoids in mental health.

CBDA-ME is a stable synthetic analogue of cannabidiolic acid (CBDA), the raw, unheated version of CBD present in cannabis flower. (The fact that CBDA becomes CBD in the presence of sunlight or heat makes it difficult to study, hence the need for a more stable CBDA-related compound.) First described in 19693 by Mechoulam and a coauthor, CBDA-ME has in recent years been shown to exert anxiolytic,4 anti-hyperalgesic,5 and anti-depressive6 effects in male rodents at low doses.

The Israel-based authors assessed the antidepressant effect of CBDA-ME in mice through a common laboratory model known as the “forced swim test.” Among the authors’ findings, one stands out (and makes its way into the paper’s title): a synthetic CB2 antagonist called “AM-630” blocked CBDA-ME’s anti-depressive effect in female rats, but not in males, indicating that the CB2 receptor is involved in mediating the compound’s effect.

Does this suggest that CB2 activation — perhaps indirectly triggered by CBD or CBDA as well as CBDA-ME — could help fight depression, at least in women? Possibly, the authors conclude, but “the cumulative data indicate that these pathways are still ambiguous and require future research in order to fully understand the mechanisms of action of acute CBDA-ME in relieving the symptoms of depression.”

Targeting CB2 in CNS Disorders

Two other reviews from 2022 provide a broader perspective on CB2’s role in several emotional, cognitive, and psychiatric disorders — from addiction and anxiety to Huntington’s and Parkinson’s diseases.

A report published in the International Journal of Molecular Sciences, coauthored by Emmanuel Onaivi at William Patterson University in New Jersey and a team of Japanese scientists, concludes that CB2 receptors “are highly expressed in neuropsychiatric and neurodegenerative disorders, and that selective CB2 ligands have promising effects on the symptomatic management of these disorders.”

However, given the potential for such drugs to have significant side effects, the authors also recommend further study of cannabis-derived compounds to target CB2 in tandem with CB1, as well as less directly through the broader endocannabinoid system.

Next, an April 2022 review in Frontiers in Psychiatry7 notes that recent findings of CB2’s presence in several brain areas and different brain cell types, including neurons and glia, indicate that “CB2 may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions.” This receptor is particularly implicated in neuropsychiatric diseases associated with neuroinflammation, according to the European scientists, who conclude that future research should continue to zero in on the critical link between CB2, inflammation, and psychiatric disorders.

Read part 1 of this 2-part series: Cancer & the CB2 Receptor

Nate Seltenrich, an independent science journalist based in the San Francisco Bay Area, covers a wide range of subjects including environmental health, neuroscience, and pharmacology. Copyright, Project CBD. May not be reprinted without permission.

Footnotes

  1. Cortez, Isadora Lopes et al. “HU-910, a CB2 receptor agonist, reverses behavioral changes in pharmacological rodent models for schizophrenia.” Progress in neuro-psychopharmacology & biological psychiatry vol. 117 (2022): 110553. doi:10.1016/j.pnpbp.2022.110553
  2. Hen-Shoval, Danielle et al. “Cannabinoid Receptor 2 Blockade Prevents Anti-Depressive-like Effect of Cannabidiol Acid Methyl Ester in Female WKY Rats.” International journal of molecular sciences vol. 24,4 3828. 14 Feb. 2023, doi:10.3390/ijms24043828
  3. Mechoulam, R et al. “Carboxylation of resorcinols with methylmagnesium carbonate. Synthesis of cannabinoid acids.” Journal of the chemical society D: chemical communications vol. 1,7 (1969): 343-344. doi:10.1039/C29690000343
  4. Pertwee, Roger G et al. “Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT1A receptor-mediated suppression of nausea and anxiety in rats.” British journal of pharmacology vol. 175,1 (2018): 100-112. doi:10.1111/bph.14073
  5. Zhu, Yong Fang et al. “An evaluation of the anti-hyperalgesic effects of cannabidiolic acid-methyl ester in a preclinical model of peripheral neuropathic pain.” British journal of pharmacology vol. 177,12 (2020): 2712-2725. doi:10.1111/bph.14997
  6. Hen-Shoval, D et al. “Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression.” Behavioural brain research vol. 351 (2018): 1-3. doi:10.1016/j.bbr.2018.05.027
  7. Kibret, Berhanu Geresu et al. “New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders.” International journal of molecular sciences vol. 23,2 975. 17 Jan. 2022, doi:10.3390/ijms23020975
  8. Morcuende, Alvaro et al. “Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders.” Frontiers in psychiatry vol. 13 866052. 15 Apr. 2022, doi:10.3389/fpsyt.2022.866052

The post Mental Health & the CB2 Receptor appeared first on Project CBD.

Original Article

Posted on Leave a comment

The Plant, the Whole Plant & Nothing But the Plant

It has long been known that resinous cannabis flower tops are infused with robust therapeutic properties. But there are also pharmacologically active components in other parts of the plant that shouldn’t be ignored when assessing the health benefits of cannabis.

The earliest reference to the therapeutic use of cannabis dates back to 2700 BC in ancient China, “the land of hemp and mulberry.” Cannabis (“Ma”) was subsequently included in the Shennong Ben Cao Jing, humankind’s first pharmacopeia, which had been assembled by Emperor Shen Nung, the legendary father of traditional Chinese medicine, who is credited with introducing the custom of drinking tea. Ma was recommended for more than a hundred ailments, including gout, rheumatism, malaria, constipation, beri-beri, and absent-mindedness.

The Shennong Ben Cao Jing called Ma one of the “Supreme Elixirs of Immortality.” It was said to confer longevity and good health. If consumed over a long period of time, Ma could “enable one to communicate with the spirit light and make the body light. It mainly supplements the center and boosts the qi [chi]. Protracted taking may make one fat, strong, and never senile.”1

When consumed in excess, however, “it may make one behold ghosts and frenetically run about.”

Seeds of Health

In traditional Chinese medicine, protein-rich cannabis seeds figured prominently both as a food source and a remedy — apparently more so than resinous cannabis flower tops. The seeds don’t contain CBD, THC, or any other cannabinoids. But modern science confirms that cannabis seeds are an excellent source of omega 3 fatty acids, which are indispensable biochemical building blocks for a healthy endocannabinoid system.

A 2011 study published in Nature Neuroscience states: “Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions.”2 Low levels of omega-3 fatty acids have been linked to neuropsychiatric diseases and impaired emotional behavior.

“Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions.”

Our endocannabinoids — the “marijuana-like” compounds that bind to the cannabinoid receptors CB1 and CB2, as well as other receptors in the brain and body — are actually derivatives or byproducts of omega 3 and omega 6 omega fatty acids. These are referred to as “essential” fatty acids because they can’t be produced by the body in adequate amounts and therefore must be ingested.

But the typical Western diet skews heavily toward corn, wheat, and other cereal grains, which are high in omega 6, whereas today we eat much less food — fish, nuts, leafy greens — that is rich in omega 3. This dietary imbalance is a major factor that contributes to many chronic diseases. It turns out that cannabis seeds (commercially available as hempseed oil, hemp hearts or hempseed protein powder) are gifted with an excellent balance of omega 3 and omega 6 fatty acids.

The Root of the Matter

Practitioners of traditional Chinese medicine also used an extract from raw cannabis roots to treat infections and to help women during childbirth. A decoction made by boiling the roots could be consumed orally as a tincture or juice or applied topically as a poultice.

Herbalists and healers have employed cannabis root preparations to treat a wide range of maladies not only in China but in other parts of the world. The first reference to the therapeutic properties of cannabis roots in Western medicine is found in the Natural Histories (77 AD) by Pliny the Elder. The Latin naturalist wrote that “the roots [of the cannabis plant] boiled in water ease cramped joints, gout too, and similar violent pain.”

Cannabis roots are endowed with medicinal compounds that have anti-inflammatory and analgesic properties.

As is the case with cannabis seeds, the roots don’t contain THC or CBD or any of the so-called minor cannabinoids. Nor are aromatic essential oils (which give cannabis flower its lively fragrance) present in the roots. Instead, the roots are endowed with other medicinal components that have analgesic and anti-inflammatory properties. Various alkaloids and sterols unique to cannabis roots are noteworthy antioxidants. Friedelin, a triterpenoid compound found in algae and lichen, as well as in cannabis roots, is known to reduce fevers.

A 12th century Persian medical text cited the antipyretic (fever-reducing) action of cannabis roots. And in 1542 the German physician Leonard Fuchs noted that a compress made with hemp root extract can soothe inflamed skin: “The raw root, pounded and wrapped, is good for the burn.” A hundred years later, English botanist John Parkinson recommended a decoction of hemp root “to cool inflammation of the head or any other part.” And Nicholas Culpepper’s Compleat Herbal, published in 1653, also mentions hemp roots as a remedy for inflammation.3

But keep in mind that cannabis is a bioaccumulator, meaning that its roots can draw heavy medals and other toxins from the soil. While that’s a great asset for cleaning up a contaminated ecosystem, it’s not what you want when growing an herb for human consumption. Where and how cannabis is cultivated are crucial factors that must be considered to avoid exposure to harmful material and to maximize the health benefits of the plant.

Flower Power

Cultivating high-quality cannabis isn’t rocket science, but it involves significant attention to detail. A hearty, adaptable plant that almost anyone can grow, cannabis lends itself to high-tech horticulture and sophisticated breeding methods designed to coax desired traits into prominence and fine-tune the quality of the high. The complexity of gourmet ganja — an adaptogen and euphoriant with an extraordinary range of smells and flavors and psychoactive subtleties — has reached a level of artistry comparable to today’s wine industry.

Growing the kindest bud ultimately depends on an ancient gardening ritual known as “sexing the plants,” a practice that entails separating male and female plants in their early stages to avoid pollination. Known as sinsemilla (Spanish for “without seeds”), the unfertilized female flower tops, oozing THC and CBD and a kaleidoscope of essential oils, are what cannabis is most famous for. The sexually frustrated females produce bigger buds with more sticky, aromatic resin in an unrequited attempt to catch pollen that never arrives.

Carl Linnaeus, the father of modern botany, wrote about this in his 1753 treatise Dissertation on the Sexes of Plants. The eminent Swedish scientist describes growing Cannabis sativa on his windowsill, an experience he greatly enjoyed:

“In the month of April, I sowed the seeds of hemp (Cannabis) in two different pots. The young plants came up plentifully . . . I placed each by the window, but in different and remote compartments. In one of them I permitted the male and female plants to remain together, to flower and bear fruit, which ripened in July . . . From the other, however, I removed all the male plants, as soon as they were old enough for me to distinguish them from the females. The remaining females grew very well, and presented their long pistilla in great abundance, these flowers continuing a very long time, as if in expectation of their mates . . . It was certainly a beautiful and truly admirable spectacle, to see the unimpregnated females preserve their pistilla so long green and flourishing, not permitting them to fade, till they had been for a very considerable time exploded, in vain, to access the male pollen . . .”4

Cannabis has been likened to a “pharmacological treasure trove.” CBD and THC are the crown jewels of this treasure trove. They are the power couple of cannabis therapeutics. But there are also dozens of secondary cannabinoids, terpenes, and flavonoids in the shimmering female inflorescence, each with specific healing attributes, which interact synergistically so that the therapeutic impact of whole plant cannabis is greater than the sum of its parts. From tap root to bud, whether seeded or seedless, the plant is the alpha and omega of cannabis medicine.

References

  1. Shou-zhong, Y. The Divine Farmer’s Materia Medica: A Translation of the Shen Nong Ben Cao Jing. Boulder, CO: Blue Poppy Press, 1997.
  2. Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I, De Smedt-Peyrusse V, Labrousse VF, Bretillon L, Matute C, Rodríguez-Puertas R, Layé S, Manzoni OJ. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci. 2011 Mar;14(3):345-50. doi: 10.1038/nn.2736. Epub 2011 Jan 30. PMID: 21278728.
  3. Ryz NR, Remillard DJ, Russo EB. Cannabis Roots: A Traditional Therapy with Future Potential for Treating Inflammation and Pain. Cannabis Cannabinoid Res. 2017 Aug 1;2(1):210-216. doi: 10.1089/can.2017.0028. PMID: 29082318; PMCID: PMC5628559.
  4. A Dissertation on the Sexes of Plants. Translated from the Latin of Linnaeus by James Edward Smith, F.R.S., into English and published 1786. Cited in Lee, Martin A. Smoke Signals. New York: Scribners: 2012, p. 22.

Martin A. Lee is the director of Project CBD. He’s authored and edited several books, including Smoke Signals, Acid Dreams, and The Essential Guide to CBD. © Copyright, Project CBD. May not be reprinted without permission.

The post The Plant, the Whole Plant & Nothing But the Plant appeared first on Project CBD.

Original Article